

COMPRENDRE l'acoustique 3° édition des bâtiments

SOMMAIRE

Partie 3

Tableau des symboles11	Équilibre acoustique des bâtiments	
Introduction15	7 • Grandes règles de mise en œuvre	125
	8 • Réhabilitation	171
	9 • De la haute qualité environnementale	
	au paysage sonore	185
Partie 1	10 • Études de cas	193
Principes généraux d'acoustique		
1 • Physique de l'acoustique	Annexes	
2 • Physiologie de l'acoustique41	A1 • Utilisation des logarithmes de base 10	211
3 • Psychosociologie de l'acoustique49	A2 • Atténuation du son dans l'air	
	A3 • Exemples de valeurs du	
	coefficient d'absorption α	215
	A4 • Exemples de valeurs de l'indice	
Partie 2	d'évaluation de l'absorption $\alpha_{_{\! w}}$	217
Principes de l'acoustique architecturale		
·	Postface	219
4 • Correction acoustique des locaux 53	Testez vos connaissances en acoustique	223
5 • Isolation acoustique des locaux contre	Bibliographie	231
les bruits aériens97	Index	235
6 • Protection contre les bruits solidiens 115	Table des matières	239

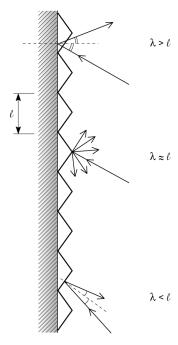


Figure 4.24. Réflexion de sons de différentes longueurs d'onde λ sur un mur en accordéon présentant des soufflets.

une salle de musique – où peuvent être diffusées toutes sortes de fréquences –, les diffuseurs devraient offrir autant de formes qu'il y a de fréquences diffusées.

Les formes empiriques des statues, des moulures et des luminaires ont souvent favorisé une bonne diffusion du son, comme à l'Opéra de Paris. Cependant, des recherches récentes ont permis d'adopter une approche plus rationnelle. Ainsi, afin d'augmenter l'homogénéité du champ acoustique dans un local, Manfred R. Schroeder a conçu le « diffuseur à résidu quadratique », encore appelé « diffuseur de Schroeder ». Basé sur la théorie des nombres aléatoires, il renvoie la même quantité d'énergie dans toutes les directions (fig. 4.25).

4.5. Traitement des locaux : principes généraux

Le volume d'un local et la qualité de ses parois en termes de réflexion, d'absorption et de diffusion du son doivent être adaptés à son usage (voir § 4.6).

4.5.1. Calcul de la durée de réverbération

La durée de réverbération est liée à la fois à la capacité d'absorption du local et à son volume :

- plus l'absorption est importante, plus la durée de réverbération est courte ;
- plus le volume du local est important, plus la durée de réverbération est longue.

À la fin du XIX^e siècle, le chercheur américain Wallace Clement Sabine a mis au point une formule simple, dite « formule de Sabine », permettant une évaluation théorique de la durée de réverbération à partir de l'absorption et du volume :

$$T_{r} = 0.16 \cdot \frac{V}{A},$$

où:

T, durée de réverbération (s);

V, volume du local (m³);

A, aire d'absorption équivalente du local (m²).

LE SAVEZ-VOUS

Wallace Clement Sabine (1860-1919), professeur à l'université Harvard, a analysé l'acoustique de salles de théâtre et de concert avec un chronomètre et un petit tuyau d'orgue faisant office de source sonore. Ayant constaté que les grosses étoffes amélioraient l'acoustique des locaux de parole en diminuant la réverbération, il a posé 1 500 coussins dans une salle de conférence de son université. L'intelligibilité des propos tenus par les conférenciers dans cette salle s'en est trouvée fortement améliorée.

Sabine a poursuivi ses travaux en étudiant les propriétés d'absorption de nombreux matériaux.

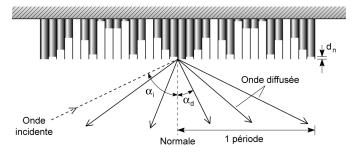


Figure 4.25. Vue en plan d'un diffuseur de Shroeder. Dans cet exemple, l'onde incidente fait un angle de –65 degrés par rapport à la normale, et les cinq ondes diffusées, des angles exprimés en degrés de –54,2, –22,4, 2,7, 28,5 et 65.

^{1.} Pour plus de précisions, se reporter au chapitre « Acoustique architecturale » d'Éric Vivié et Michel Cassan dans l'ouvrage collectif *Le Livre des techniques du son* (tome 1) et à l'ouvrage de Thierry Malet, *Acoustique des salles : le guide de référence du praticien.*

REMAROUE

Les spécialistes de l'acoustique font appel à d'autres formules pour calculer la durée de réverbération, comme celles de Eyring et de Millington.

L'évaluation de la durée de réverbération peut également être réalisée grâce au « libre parcours moyen ». Il s'agit de la distance moyenne parcourue entre deux réflexions successives par une onde acoustique se propageant dans un local. L'évaluation du libre parcours moyen est donnée par la formule approchée de Jaeger :

 $l_{\rm m} = \frac{4V}{S}$

où:

l_m, libre parcours moyen (m);

V, volume du local supposé de forme régulière (m³);

S, surface totale des parois du local (m²).

À chaque réflexion, une partie de l'énergie est absorbée. À partir du coefficient d'absorption α moyen, noté $\alpha_{\rm m}$, il est possible de calculer le nombre de réflexions nécessaires pour que l'intensité sonore devienne le millionième ($10^{-6} = 1/10^6$) de ce qu'elle était au départ (voir la définition de la durée de réverbération au § 4.2), ce nombre étant noté n. Ainsi :

ce qui donne :

$$(1 - \alpha_m)^n = 10^{-6},$$

$$n = \frac{-6}{\log(1 - \alpha_m)}.$$

La connaissance du nombre de réflexions et du libre parcours moyen permet de déterminer la distance d que doit parcourir une onde acoustique pour que l'intensité sonore devienne le millionième de ce qu'elle était au départ. En effet :

$$d = n \cdot l_m$$
.

Cette distance, rapportée à la célérité du son dans l'air, permet de déterminer la durée de réverbération :

$$T_r = \frac{d}{340}$$

APPLICATION

Soit une salle de $5\times4\times2.5$ m, dont les parois présentent un coefficient α moyen de 0,13 à 1 000 Hz. Quelle est la durée de réverbération du local à 1 000 Hz ?

Le volume V du local peut être calculé :

$$V = 5 \times 4 \times 2,50 = 50 \text{ m}^3.$$

La surface S des parois est la suivante :

$$S = (2 \times 5 \times 4) + (2 \times 2,50 \times 4) + (2 \times 2,50 \times 5) = 85 \text{ m}^2$$
.

Le libre parcours moyen l_m est obtenu par la formule :

$$l_{\rm m} = \frac{4V}{S} = \frac{4 \times 50}{85} = 2,35 \text{ m}.$$

Le nombre de réflexions nécessaires pour que l'intensité devienne le millionième de ce qu'elle était au départ est donc :

$$n = \frac{-6}{\log(1 - 0.13)} = 99.$$

La distance à parcourir par l'onde acoustique d peut alors être calculée :

$$d = n \cdot l_m = 99 \times 2,35 = 233 \text{ m}.$$

La durée de réverbération T, obtenue est la suivante :

$$T_r = \frac{233}{340} = 0,69$$
, soit environ 0,7 s.

La formule de Sabine retenue dans le cadre du présent ouvrage est plus simple d'emploi. Elle est de bonne qualité, à condition toutefois que :

- le local considéré ne soit pas trop important ;
- la répartition des absorbants soit homogène et que les coefficients d'absorption soient assez faibles.

REMAROUE

Les coefficients d'absorption des matériaux sont déterminés en laboratoire au moyen de la formule de Sabine ; c'est la raison pour laquelle les coefficients α sont également appelés « coefficients α Sabine » et parfois notés « α , ».

APPLICATION

Soit un local de $5 \times 4 \times 2,5$ m, dont le plafond présente un coefficient d'absorption α de 0,4 à $1\,000$ Hz et dont toutes les autres parois ont un coefficient α de 0,05 à la même fréquence. Quelle est la durée de réverbération du local à $1\,000$ Hz ?

La surface S₁ du plafond est de :

$$S_1 = 5 \times 4 = 20 \text{ m}^2$$
.

La surface S₂ des autres parois est de :

$$S_2 = (5 \times 4) + (2 \times 2,50 \times 4) + (2 \times 2,50 \times 5) = 65 \text{ m}^2.$$

L'aire d'absorption équivalente (A) est obtenue par la formule :

$$A = S_1 \cdot \alpha_1 + S_2 \cdot \alpha_2 = (20 \times 0.4) + (65 \times 0.05) = 11.25 \text{ m}^2.$$

La durée de réverbération T peut donc être calculée :

$$T_r = 0.16 \frac{V}{A} = 0.16 \frac{50}{11,25} = 0.71$$
, soit environ 0.7 s.

REMARQUE

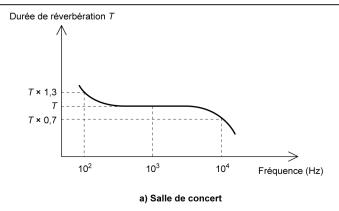
Les parois ne sont pas les seuls éléments absorbants dans les locaux. C'est pourquoi la nature du matériel présent (mobilier et machines) et le type d'occupation des locaux sont également pris en considération, aussi bien dans la réglementation que dans l'étude des salles. En outre, dans les salles de grand volume, il est tenu compte de l'absorption de l'air (voir annexe 2).

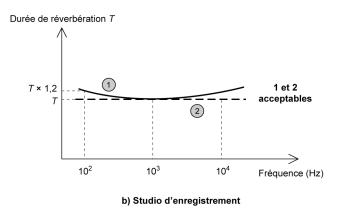
réverbération préconisées sont différentes selon les fréquences. À partir de la durée de réverbération aux fréquences médiums (1 000 Hz), peuvent être déterminées celles concernant les fréquences basses et aiguës (**fig. 4.38b**). Quoi qu'il en soit, et bien que ces valeurs ne soient que des moyennes, les auditeurs en sont généralement satisfaits.

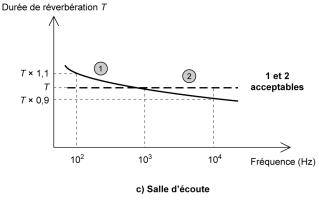
Actuellement, la tendance est à l'augmentation des durées de réverbération, notamment dans les salles de concert. Par ailleurs, certains mélomanes préconisent des temps de réverbération différents suivant les compositeurs.

Pour les salles de parole, il n'existe pas de corrélation directe entre la durée de réverbération et l'intelligibilité. Cependant, les durées de réverbération préconisées par les abaques permettent généralement d'obtenir un résultat acceptable.

4.6.2. Locaux orientés avec ou sans assistance électroacoustique

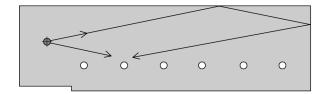

Petites salles, salles de cours


Dans ce type de salle, en l'absence de traitement acoustique, la réverbération est trop longue et il existe des risques d'écho, ce qui engendre une mauvaise intelligibilité (fig. 4.39a). Il faut donc traiter la partie du plafond située vers le fond du local ainsi que le mur du fond et un mur latéral (fig. 4.39b).


Le mur du fond et la paroi latérale devraient être traités jusqu'à la hauteur des têtes des auditeurs, c'est-à-dire jusqu'à 1,20 m environ. Malheureusement, les matériaux absorbants étant, à de rares exceptions près, très fragiles, il convient, pour éviter leur détérioration, qu'ils restent inaccessibles aux auditeurs. Le traitement des murs est donc réalisé à partir de 1,80 à 2 m de hauteur. En général, la première moitié du plafond ne reçoit pas de matériaux absorbants, ce qui favorise les premières réflexions du son. Seules les parties latérales de la zone du plafond la plus proche du conférencier sont traitées, car les réflexions du son à ces endroits sont dirigées non pas vers les auditeurs, mais vers les murs latéraux. Afin d'améliorer les réflexions utiles, il est recommandé de disposer des parois inclinées de chaque côté de l'orateur.

Amphithéâtres, salles de conférence

Le volume et la forme de la salle, ainsi que l'étude des premières réflexions du son, se révèlent prépondérants.



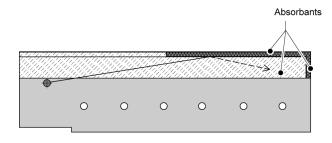


Figure 4.38b. Durées de réverbération préconisées en fonction de la fréquence (source : Roger Lamoral, Acoustique et architecture, Masson, Paris, 1975).

La disposition des auditeurs en gradins favorise l'absorption, ce qui permet de limiter les zones traitées au mur du fond et, éventuellement, à la zone de plafond la plus éloignée du conférencier. Le plafond situé au-dessus du conférencier est disposé de manière que les ondes sonores, en s'y réfléchissant, soient distribuées au milieu et au fond de la salle.

a) Salle sans traitement : vue en coupe

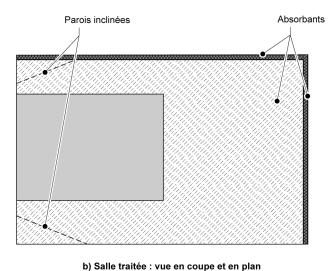
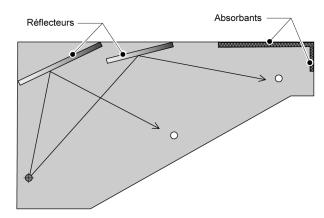
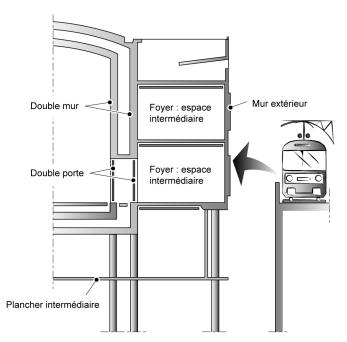


Figure 4.39. Salle de cours sans et avec traitement acoustique.

Les murs latéraux, s'ils sont réfléchissants, ne doivent pas être parallèles. S'ils le sont, ils doivent être impérativement traités afin de les rendre diffusants. La solution consiste à les habiller de reliefs pour briser leur parallélisme et assurer une bonne homogénéité du champ sonore.

La **figure 4.40** présente la coupe de principe d'un amphithéâtre où tous les auditeurs, quelle que soit leur place, bénéficient d'une bonne intelligibilité.




Figure 4.40. Coupe de principe d'un amphithéâtre où tous les auditeurs bénéficient d'une bonne intelligibilité.

Grandes salles : salles de concert, théâtres

Dans l'exemple qui suit, les problèmes d'isolation et de vibrations sont supposés négligeables ou résolus (fig. 4.41).

• Volume

Le volume optimal d'une salle dépend de l'usage qui en est fait. *Pour une salle de concert*, le volume par auditeur doit

Figure 4.41. Problèmes d'isolation et de vibrations résolus par l'utilisation d'espaces tampons : exemple du Royal Festival Hall, à Londres.

Tahlaau 10 2	. Bruits engendrés dans	l'environnement nar	l'amenée d'air frais
iabieau iv.z.	. Di uits elluellules ualis	i environnement par	i aillellee u all Itais.

Fréquences médianes des octaves (Hz)	63	125	250	500	1 000	2 000	4 000	8 000	dB(A)
Bruits mécaniques à 1,00 m	88	84	81	76	74	71	69	63	80
Atténuation due au local (avec $Q = 2)^{(1)}$	2	3	6	5	5	6,5	6	5	_
Niveau de pression acoustique à l'entrée d'air	86	81	75	71	69	64,5	63	58	_
Atténuation due au silencieux primaire	6	10	18	30	36	42	30	16	_
Atténuation due aux coudes et au plenum absorbant	6	8	10	12	14	15	15	15	_
Atténuation due au silencieux secondaire	6	10	18	30	36	42	30	16	_
Niveau de pression acoustique résiduel	68	54	29	-	-	-	-	11	-
Régénération du silencieux	44	42	41	38	35	30	25	26	_
Régénération de la grille	41	43	44	44	39	31	22	10	_
Niveau de pression acoustique total	68	54,5	46	45	40,5	33,5	27	26	_
Diminution due à la distance	15	15	15	15	15	15	15	15	_
Niveau de pression acoustique en limite de propriété	53	39,5	31	30	25,5	18,5	12	11	_
Pondération	- 26	- 16	- 8,5	- 3	0	+ 1	+ 1	- 1	-
Tolérance	3	3	3	3	3	3	3	3	_
Niveau de pression acoustique pondéré en limite de propriété	30	26,5	25,5	30	28,5	22,5	16	13	36
(1) Q : coefficient de directivité.									

10.2. Calcul d'une isolation vis-à-vis de bruits extérieurs importants

Opération : immeuble d'habitation à Juvisy-sur-Orge (91).

Architecte: Cadence (E. Lombard).

Acousticien: L. Hamayon.

L'opération comprend un bâtiment R + 4 de 24 logements. Comme l'opération du Mans présentée au § 10.1.1, ce bâtiment se situe près d'un réseau ferré. Il s'agit d'un nœud de circulation extrêmement important où se rejoignent les lignes de la SNCF et du RER (fig. 10.13).

Principes acoustiques

Face à un environnement sonore aussi défavorisé, il était nécessaire de concevoir un bâtiment dans lequel la majorité des logements serait protégée par l'écran que formerait le bâtiment lui-même. Seuls quelques logements présenteraient des façades entièrement orientées vers les voies de chemin de fer. Pour ces logements, des façades doubles s'imposaient, l'espace entre les deux façades devant être important afin de former des espaces à vivre, à défaut d'espaces « habitables » au sens strict du mot (fig. 10.14).

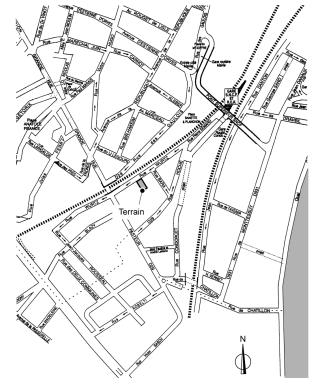


Figure 10.13. Juvisy-sur-Orge. Plan de situation.

Note de calcul

La note de calcul présentée ci-dessous concerne la pièce de séjour du logement du premier étage, logement le plus exposé au bruit (fig. 10.15, 10.16, 10.17 et 10.18).

Le calcul d'une façade double ne peut être mené comme celui d'une façade simple. L'espace intermédiaire ne pouvant être considéré comme normalement meublé, la durée de réverbération ne peut pas être égale à 0,5 s. Il n'est donc pas possible d'utiliser directement la formule donnée au § 7.3.4 :

$$D_{_{nT,A,tr}} = \! 10 log \frac{0.32 \ V}{\sum Si \cdot 10^{-0.1 \, Ri} + \sum S_{lat} \cdot 10^{-0.1 \, (R+10)} + \sum 10^{-0.1 \left[\left[D_{n.e.w} + \ C_{tr} \right) - 10 \right]}},$$

Dans un tel cas, « 0,32 V », issu de la formule de Sabine (voir § 4.5.1), est remplacé par l'aire d'absorption équivalente A.

REMARQUE

La formule de Sabine :

$$T_r = 0.16 \cdot \frac{V}{A}$$

donne, pour une durée de réverbération de 0,5 s :

$$A = 0.16 \frac{V}{T} = 0.16 \frac{V}{0.5} = 0.32 \text{ V}.$$

Par ailleurs, les indices d'affaiblissement acoustique ne peuvent être utilisés globalement car :

- la première façade protège l'espace intermédiaire des bruits extérieurs, ce qui signifie que le bruit de trafic est pris en considération :
- la deuxième façade protège la pièce de séjour des bruits intérieurs, ce qui signifie que le bruit rose est pris en considération. En revanche, le calcul peut être mené en recherchant les isolements par bande d'octave.

Voies de chemin de fer

APPLICATION

10 m

À titre d'exemple, le calcul de l'isolement est mené pour la bande d'octave centrée sur 500 Hz.

Éléments de calcul

- Les surfaces de la façade extérieure sont :
- partie vitrée : $12,27 \times 1,49 = 18,28 \text{ m}^2$;
- partie allège : $12,27 \times 1,01 = 12,39 \text{ m}^2$;
- surfaces latérales : $1,04 \times 2,42 = 2,52 \text{ m}^2$.
- Les indices d'affaiblissement acoustique de la façade extérieure à 500 Hz sont :
- partie vitrée : R = 24.3 dB ;
- partie allège : R = 45,2 dB.
- L'isolement acoustique d'une des entrées d'air de la façade extérieure à 500 Hz est de 30,8 dB, sachant que la façade extérieure a 4 entrées d'air

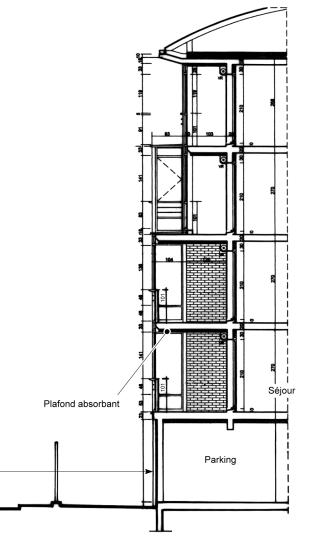


Figure 10.14. Juvisy-sur-Orge – Coupe présentant l'espace intermédiaire.

TABLE DES MATIÈRES

Préfa	ace9	1.9.1. Échelle des fréquences audibles	30
		1.9.2. Fréquences basses, moyennes et élevées	30
Table	eau des symboles11	1.10. Sons et bruits – Définitions	30
1.1	disease and	1.10.1.Son pur	30
Intro	duction 15	1.10.2.Son complexe	31
		1.10.3.Son confus	31
Part	tie 1	1.10.4.Bruit	31
Drin	ncipes généraux d'acoustique	Bruit continu	
PIII	icipes generaux a acoustique	Bruit intermittent	
1 - DI	husimus de l'assustians	Bruit à caractère impulsionnel	32
I • PI	hysique de l'acoustique19	Bruit à tonalité marquée	32
1.1.	Vibrations	1.11. Spectre d'un bruit	32
1.2.	Pression acoustique	1.12 Propagation en champ libre	33
1.3.	Puissance et intensité acoustiques22	1.12.1. Décroissance des niveaux sonores liée	
1.4.	Unité : le décibel22	à l'éloignement de la source sonore	34
		Source ponctuelle (rayonnements sphérique et	
1.5.	Niveaux d'intensité, de pression, de puissance 23 Niveau d'intensité acoustique	hémisphérique)	34
	Niveau de pression acoustique	Source linéaire (rayonnements cylindrique et	
	Niveau de puissance acoustique	semi-cylindrique)	34
	Seuil d'audibilité 23	1.12.2. Absorption atmosphérique	36
	Seuil de douleur	Fréquence du son	36
		Température et degré hygrométrique de l'air	36
1.6.	Expression de niveaux sonores en décibels 23	1.12.3. Effets du vent	3
1.7.	Addition et soustraction de décibels24	1.12.4. Gradient thermique	37
	Addition de deux niveaux sonores	1.12.5. Directivité	37
	Addition de plus de deux niveaux sonores	1.12.6. Effets intéressants	37
1.7.3.	Soustraction de deux niveaux sonores	Effet Doppler-Fizeau	37
1.8.	Célérité du son	Bang supersonique	
1.9.	Fréquence	1.13. Propagation dans les solides	40

2 • P	Physiologie de l'acoustique 41	4.3.	Absorption	56
2.1.	L'oreille humaine41	4.3.1.	Matériaux absorbants	
	Oreille externe 41		Matériaux poreux et fibreux	
	Oreille moyenne		Résonateurs	
	Oreille interne 42		Membranes	61
	Sensibilité de l'oreille aux différentes fréquences 42	4.3.2.	Coefficient d'absorption α	62
	Champ auditif	4.3.3.	Indice d'évaluation de l'absorption α_{w}	64
	•	4.3.4.	Aire d'absorption équivalente A	64
2.2.	Indicateurs du bruit perçu 43 Le dB(A) 43	4.4.	Diffusion	65
	Courbes d'évaluation du bruit	4.5.	Traitement des locaux : principes généraux	66
2.2.2.	Courbes NR		Calcul de la durée de réverbération	
	Courbes ISO et NC		Champ direct et champ réverbéré	
223	Niveau de pression acoustique continu équivalent		Constante d'absorption R d'un local	
2.2.3.	pondéré A		Niveaux sonores des champs direct et réverbéré	
224	Niveau acoustique fractile		Coefficient de directivité Q	
			Décroissance du son en espace clos	
2.3.	Mesures et instruments de mesure45		Volume et géométrie	
	Mesures		Volume optimal	
	Cartographie sonore		Géométrie optimale	
2.3.3.	Instruments de mesure : les sonomètres46		Défauts	
2.4.	Effets du bruit sur l'ouïe46	4.5.8.	Éléments complémentaires	
2.4.1.	Réflexe stapédien		Effet de masque	
	Fatigue auditive		Effet « cocktail party »	
	Surdité professionnelle		Bruits émis par les équipements	
	Activités non professionnelles	4.6.	Traitement des locaux : applications	77
	Autres causes de surdité		Salles d'enseignement et salles de spectacle	
2.5.	Effets physiologiques indirects48	4.0.1.	Observations générales	
4.3.	Effets physiologiques munects40		Durées de réverbération préconisées	
7 a D	Sychosociologie de l'acoustique	462	Locaux orientés avec ou sans assistance	/ /
J • F		1.0.2.	électracoustique	78
3.1.	Effets psychologiques dus au bruit49		Petites salles, salles de cours	
3.2.	Effet « cocktail party »		Amphithéâtres, salles de conférence	
			Grandes salles : salles de concert, théâtres	
3.3.	Gêne due au bruit		Salles polyvalentes	
3.4.	Stress causé par le bruit50		Conservatoires de musique	
			Studios d'enregistrement	
Dari	tie 2		Lieux de culte	
		4.6.3.	Salles électroacoustiques	88
Prir	ncipes de l'acoustique architecturale		Cinémas	88
	- -		Salles du type Zénith	88
4 • C	Correction acoustique des locaux53		Discothèques	
4.1.	Objectif de la correction acoustique53		Salles d'écoute particulières et salles	
	•		de home cinéma	89
4.2.	Réverbération54	4.6.4.	Locaux de travail	90

	Locaux industriels et ateliers9	0	5.3.	Calcul d'un isolement	. 112
	Bureaux, salles de réunion (classique et paysager) 9	1			
4.6.5.	Locaux de sport9	1	6 • P	rotection contre les bruits solidiens	. 115
	Gymnases9	1	6.1.	Principes généraux	115
	Piscines	3			
4.6.6.	Locaux divers non orientés	3	6.2.	Protection contre les bruits de choc	
	Restaurants 9	13		Définitions	. 117
	Circulations9		6.2.2.	Transmission d'un bruit de choc	440
	Loggias ouvertes et fermées		6.2.2	d'un local à un autre	. 118
4.6.7.	Locaux exceptionnels		6.2.3.	Méthode de calcul simplifiée de l'indice $\Delta L_{\rm w}$ dans	110
	Chambres sourdes (salles anéchoïques)9			le cas de planchers traditionnels	. 119
	Chambres réverbérantes	6		Valeur du niveau du bruit de choc $L_{n,w}$	110
				du plancher nu.	
5 • Is	solation acoustique des locaux			Incidence des transmissions latérales (TL)	
C	ontre les bruits aériens9	7		Valeur de l'indice de transmission de jonction K	. 120
5.1.	Transmission d'un bruit d'un local à un autre 9	7	6.3.	Protection contre les vibrations	
			6.3.1.	Principaux critères	
5.2.	Isolement entre deux locaux9	8		Atténuation	
5.2.1.	Influence de l'indice d'affaiblissement			Amortissement de la suspension	. 122
	acoustique R de la paroi séparative9	8	6.3.2.	Détermination des supports antivibratiles	. 122
	Indice d'affaiblissement acoustique R d'une paroi				
	simple homogène	19	ъ.		
	Indices d'affaiblissement acoustique pondérés R _w ,	_	Part	tie 3	
	R _A et R _{A,tr}		Équ	ilibre acoustique des bâtiments	
	double	13	7 - 0	randos ràglos do miso on couvro	125
	Indice d'affaiblissement acoustique R d'une paroi			randes règles de mise en œuvre	رعا
	discontinue	7	7.1.	Éviter les sources de bruit ou atténuer	125
	Indices uniques d'amélioration de l'indice		711	leur puissance sonore	
	d'affaiblissement acoustique ΔR_w , ΔR_A et $\Delta R_{A,tr}$ 10			Actions politiques et administratives	
	Influence de la surface de la paroi séparative 10			Actions sur les équipements des bâtiments	
	Influence des transmissions latérales		7.1.3.	Chaufferies	
	Influence des transmissions parasites			Chaudière individuelle	
	Influence du volume du local de réception	0		Ventilation	
5.2.6.	Influence de l'aire d'absorption équivalente	0		Climatisation individuelle	
<i>-</i>	du local de réception	.0		Plomberie	
5.2.7.	Types d'isolement acoustique : brut, normalisé,	1		Électricité : transformateurs, groupes électrogènes.	
	standardisé, standardisé pondéré				
	Isolement acoustique brut D _b		7.2.	Éloigner les locaux à isoler des sources sonores	
	Isolement acoustique normalisé D _n		7.2.1.	Dispositions d'urbanisme	
	Isolement acoustique standardisé D _{nT}			Abords des aérodromes	
	Isolement acoustique standardisé pondéré D _{nT,w} 11			Trafics routier et ferroviaire	
	Isolement acoustique standardisé pondéré D _{nT,A} 11			Trafic fluvial	
	Isolement acoustique standardisé pondéré D _{nT,A,tr} 11	2		Centrales nucléaires	
	Termes d'adaptation C et C _{tr}	2		Champs d'éoliennes	. 134

	Installations d'assainissement	134	8 • F	Réhabilitation	171
	Usines	134	8.1.	Nuisances pouvant justifier	
7.2.2.	Dispositions constructives	135	0,1,	une réhabilitation acoustique	171
	Équipements		8.2.	Diagnostic	
	Distribution	135		Enquête	
7.3.	Atténuer les bruits extérieurs	137		Écoute	
7.3.1.	Écrans antibruit	137	0.2.2.	Nature des bruits	
	Fonctionnement	137			
	Efficacité	138	0.2.2	Lieu d'émission des bruits	
	Écrans de verdure	140		Examen des lieux	
	Bâtiments écrans	140		Examen des plans et des devis descriptifs	
7.3.2.	Disposition du bâtiment par rapport aux			Mesures acoustiques	
	nuisances : plan de masse	140	8.2.6.	Sondages	172
7.3.3.	Conception du bâtiment		8.3.	Programme	172
	Espaces intermédiaires		8.3.1.	Homogénéité acoustique du bâtiment	172
	Balcons et loggias			Compatibilité entre isolation acoustique	
	Qualité de l'enveloppe du bâtiment			et isolation thermique	172
7.3.4.	Calcul d'un isolement		0.4	•	
	Cas courant		8.4.	Projet	
	Cas d'une toiture en pente			Prescriptions architecturales	
7.3.5.	Défauts d'isolement	149	8.4.2.	Prescriptions techniques	
7.4.	Atténuer les bruits intérieurs	149		Bruits aériens extérieurs au bâtiment	
7.4.1.	Bruits aériens	149		Bruits aériens intérieurs	
	Valeurs des indices d'affaiblissement acoustique			Bruits de choc	182
	pondérés de diverses parois	150		Bruits d'équipement	182
	Influence des jonctions	157	8.5.	Choix des entreprises	183
	Défauts d'isolement	158		<u>-</u>	
7.4.2.	Bruits de choc	160	8.6.	Suivi des travaux dans les locaux occupés	184
	Indices de réduction du niveau de bruit de		8.7.	Réception des travaux	184
	choc pondéré ΔL_{w}	161			
	Exécution d'une dalle flottante	161	9•0	De la haute qualité environnementale	
	Réduction du niveau de bruit de choc d'un		a	u paysage sonore	185
	revêtement de sol associé à une dalle flottante				
7.4.3.	Bruits d'équipement		9.1.	La haute qualité environnementale (HQE)	185
	Chauffage		9.1.1.	Relation harmonieuse des bâtiments avec leur	105
	Ventilation		0.1.2	environnement immédiat (cible 1)	
	Plomberie	168	9.1.2.	` '	
7.5.	Agir autour du récepteur et sur le récepteur	169		Diagnostic préalable	
7.5.1.	Cabines	169		Prévention et concertation	
7.5.2.	Protections individuelles	170		Établissement du cahier des charges	
	Bouchons d'oreille	170		Préparation du chantier	
	Serre-tête			Suivi du chantier	
	Casques	170	9.1.3.	Confort acoustique (cible 9)	186

Amélioration des performances et équilibre	Prin
acoustique du bâtiment 186	Note
Choix des matériaux	10.3. Calo
9.2. Le paysage sonore	de s
9.2.1. Définitions du paysage sonore	
9.2.2. Histoire des paysages sonores	Annexe
Paysages sonores spontanés	A1 • Utili
Paysages sonores créés	Exe
9.2.3. Caractères généraux du paysage sonore urbain 189	Prop
Sources sonores	
Architecture des lieux	A2 • Atté
Écoute de l'individu	
	A3 • Exe
10 • Études de cas 193	A3 • Exercises
10 • Études de cas	
	coef
10.1. Conception architecturale adaptée à	coef
10.1. Conception architecturale adaptée à d'importantes contraintes acoustiques 193	coef
10.1. Conception architecturale adaptée à d'importantes contraintes acoustiques	coef A4 • Exe d'év
10.1. Conception architecturale adaptée à d'importantes contraintes acoustiques	coef A4 • Exe d'év Postface
10.1. Conception architecturale adaptée à d'importantes contraintes acoustiques 193 10.1.1. Un environnement bruyant 193 Principes acoustiques 193 Homogénéité acoustique 195	coed A4 • Exe d'év Postface
10.1. Conception architecturale adaptée à d'importantes contraintes acoustiques19310.1.1. Un environnement bruyant193Principes acoustiques193Homogénéité acoustique195Vibrations195	coef A4 • Exe d'év Postface n'est plus Testez vo
10.1. Conception architecturale adaptée à d'importantes contraintes acoustiques19310.1.1. Un environnement bruyant193Principes acoustiques193Homogénéité acoustique195Vibrations19510.1.2. Un environnement à protéger195	coef A4 • Exe d'év Postface n'est plus

	Note de calcul
10.3.	Calcul du niveau sonore dû à un réseau de soufflage dans une salle de théâtre203
Anr	iexes
A1 •	Utilisation des logarithmes de base 10 211 Exemples de logarithmes décimaux
A2 •	Atténuation du son dans l'air213
А3•	Exemples de valeurs du coefficient d'absorption α 215
A4 •	Exemples de valeurs de l'indice d'évaluation de l'absorption $\alpha_{\rm w}$ 217
	face - Le bruit des villes plus tel qu'il était219
Teste	ez vos connaissances en acoustique223
Bibli	ographie231
Inde	x235

COMPRENDRE L'acoustique 3º édition des bâtiments

Loïc Hamayon

a enseigné l'acoustique à l'École spéciale d'architecture (ESA). à l'École d'architecture de Paris La Défense et à l'université Pierre et Marie Curie (Paris VI). Il a dirigé de nombreuses équipes de recherche dans le domaine de l'acoustique architecturale. À la tête d'une agence d'architecture, il a construit près de 350 logements dans des sites très contraints. En tant que conseil en acoustique, il a participé à de nombreuses constructions de bâtiments d'habitation. de salles de spectacle et d'établissements d'enseignement et de santé. Il est également l'auteur de l'ouvrage **Réussir** l'acoustique d'un bâtiment (Éditions du Moniteur).

Pour concevoir et construire un bâtiment conforme aux exigences acoustiques, il faut comprendre et sentir les phénomènes acoustiques, **pour mieux utiliser les matériaux** et mieux appréhender les **systèmes constructifs**.

L'acoustique architecturale cherche à favoriser l'écoute ou à protéger du bruit. Dans les deux cas, il est nécessaire de savoir comment le son se propage dans l'espace afin d'en maîtriser le cheminement et la réception.

Comprendre simplement l'acoustique des bâtiments initie à cette problématique et explique les grandes règles de **l'isolation** et les **techniques de base** mais aussi les dernières avancées les plus innovantes, conformes aux **exigences réglementaires** toujours plus contraignantes.

De l'exercice de la musique chez soi jusqu'au calcul des écrans antibruit, en passant par la conception des passages entre deux espaces clos, les questions techniques concrètes trouvent leur explication théorique et leurs **solutions pratiques** dans cet ouvrage de vulgarisation professionnelle.

Ce livre est avant tout un **outil précieux d'aide à la conception** pour tous les acteurs de la construction, architectes, entrepreneurs, ingénieurs de bureaux d'études, concepteurs et étudiants.

Le nombre de formules mathématiques est limité, au profit de tableaux explicatifs et de plus de 200 schémas très pédagogiques, les plus simples et explicites possible. Des études de cas concrets de réhabilitation sont également détaillées.

1 | Principes généraux d'acoustique : Physique de l'acoustique – Physiologie de l'acoustique – Psychosociologie de l'acoustique • 2 | Principes de l'acoustique architecturale : Correction acoustique des locaux – Isolation acoustique des locaux contre les bruits aériens – Protection contre les bruits solidiens • 3 | Équilibre acoustique des bâtiments : Grandes règles de mise en œuvre – Réhabilitation – De la haute qualité environnementale au paysage sonore – Études de cas • Annexes

Les ouvrages de la collection « Comprendre simplement » ont pour objectif d'expliquer les mécanismes physiques et les principes constructifs qui permettent de faire les meilleurs choix technologiques et d'aboutir à une bonne conception architecturale. Leur approche pédagogique conjugue trois axes complémentaires : l'expérience commune, la démarche scientifique et l'exemple.